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Abstract Peatlands play a key role in the global carbon cycle, sequestering and releasing large amounts

of carbon. Despite their importance, a reliable method for the quantification of peatland thickness and

volume is still missing, particularly for peat deposits located in the tropics given their limited accessibility,

and for scales of measurement representative of peatland environments (i.e., of hundreds of km2). This

limitation also prevents the accurate quantification of the stored carbon as well as future greenhouse gas

emissions due to ongoing peat degradation. Here we present the results obtained using the airborne

electromagnetic (AEM) method, a geophysical surveying tool, for peat thickness detection at the landscape

scale. Based on a large amount of data collected on an Indonesian peatland, our results show that the AEM

method provides a reliable and accurate 3‐D model of peatlands, allowing the quantification of their

volume and carbon storage. A comparison with the often used empirical topographic approach, which is

based on an assumed correlation between peat thickness and surface topography, revealed larger errors

across the landscape associated with the empirical approach than the AEMmethodwhen predicting the peat

thickness. As a result, the AEM method provides higher estimates (22%) of organic carbon pools than the

empirical method. We show how in our case study the empirical method tends to underestimate the peat

thickness due to its inability to accurately detect the large variability in the elevation of the peat/mineral

substrate interface, which is better quantified by the AEM method.

Plain Language Summary Peatlands store in their soils about the same amount of carbon

present in the vegetation biomass. Peat degradation due to human interventions (as for example soil

drainage) and fires that occur during severe droughts release several gigatons of carbon dioxide and other

greenhouse gases (GHGs) every year. The accurate assessment of the carbon stored in peatlands is of key

importance to implement effective strategies to mitigate climate change, promoting conservation actions,

and avoiding potential GHG emissions. In this research, we compare two methods that allow us to construct

a 3‐D model of peatlands. Applying the methods to a large study site in Indonesia, we show how a

geophysical method called airborne electromagnetics allows for a more accurate quantification of the peat

volume and the organic carbon pool.

1. Introduction

Global estimates report that peatlands store in their soils about the same amount of carbon stored in the

world's vegetation phytomass (i.e. sum of the aboveground and the belowground biomass), with values that

range between 400 and 600 Pg depending on authors (Scharlemann et al., 2014; Yu et al., 2010; Gorham,

1991). The uncertainty in these estimates is mainly due to our inability to accurately quantify the volume

of peat found in peatlands, an accurate estimation of which is needed to determine the amount of stored car-

bon (Page et al., 2002; Ballhorn et al. 2009; Turetsky et al., 2015; Warren et al., 2017). Ground‐based studies

can use coring, probing, and geophysical methods to estimate peat volume in small peatlands or portions of

them but cannot provide the spatial coverage needed to obtain estimates of stored carbon over larger areas.
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In order to estimate the volume of a peatland, the simultaneous quantification of its areal extent, topo-

graphic elevation, and bottom morphology and depth are needed.

The surface morphology of peatlands, especially those with domed surfaces, has long fascinated ecologists,

geomorphologists, and remote‐sensing experts. The topography of peatlands, their development over time,

and their dependence on hydrological variables, i.e., rainfall and drainage patterns, have been studied exten-

sively in the past (Ingram, 1982; Clymo, 1984; Foster &Wright, 1990; Belyea & Baird, 2006). Thanks to these

efforts, we know that the topographic shape and patterns within peatlands reflect the interactions between

the underlying terrain form, vegetation, climate, and hydrology (Rydin & Jeglum, 2013). Much effort has

also been devoted to inferring peatland morphology using airborne and satellite sensors in order to describe

their areal extent (Ballhorn et al., 2011; Dargie et al., 2017; Miettinen et al., 2012) and surface elevation

(Draper et al., 2014; Jaenicke et al., 2008) including possible changes in topographic elevation related to peat

degradation (Ballhorn et al., 2009). However, even though past efforts have traditionally focused on the char-

acterization of the surface morphology of peatlands, e.g., its topography and extent, the importance of the

morphology of the peat bottom has been understudied. Previous studies have demonstrated the ability of cer-

tain ground‐based geophysical methods such as ground‐penetrating radar or electrical resistivity imaging to

characterize the morphology of the peat/mineral‐soil interface (Slater & Reeve, 2002; Comas et al., 2015;

Parsekian et al., 2011), and ultimately to use these measurements to infer carbon stocks in peatlands

(Comas et al., 2017; McClellan et al., 2017). However, these measurements are typically limited by their scale

of measurement since they require direct contact with the ground surface.

In this work, we use a novel remote geophysical approach based on very high spatial resolution measure-

ments acquired using the airborne electromagnetic (AEM) method to detect the bottom of the peat profile

of a large Indonesian mire and consequently quantify its volume and infer total stored carbon at the land-

scape (km) scale. The AEM method that we applied utilizes the contrast in electrical resistivity between

the peat and the underlying substrate thus allowing for the detection of the bottom surface of the peatland.

The success in the application of this approach depends on the specific characteristics of the instrument used

for the survey as well as on the electrical resistivity contrast between the peat and the substrate. Moreover,

since peatlands may also be formed by very thin peat layers, the ability of this geophysical method to detect

and resolve very near surface structures was also assessed.

In order to determine the accuracy of the 3‐D model of the peatland retrieved using the AEM method we

used two approaches, i.e., (a) the validation of the peat thicknesses at specific locations using a large dataset

of field point measurements and (b) the quantitative comparison of the AEM 3‐D model with a 3‐D model

created using a more traditional approach based on an empirical correlation between peat thickness and

peatland surface topography.

The empirical approach used here for comparison comes from recent studies (Deltares, 2016; Rudiyanto

et al., 2015; Hooijer & Vernimmen, 2013; Parry et al., 2012; Holden & Connolly, 2011; Jaenicke et al.,

2008) that have suggested the presence of a correlation between peat thickness and peatland surface eleva-

tionmainly for Asian peatlands. Such a correlation, if properly established, would allow the quantification of

the peat volume by simply retrieving the topography of the peatland surface (using for example LiDAR sur-

veys, e.g., Deltares, 2016). As often happens with empirical approaches, the success in the application of such

methodology raises three main research questions: (1) How general is the existence of a correlation between

peat thickness and surface elevation across the world's peatlands? (2) Once a correlation is found in one area,

how transferable is it to other areas as the basis for inferring peat thickness? (3) If given a positive answer to

(1) and (2), can one, with confidence, adopt the use of a correlation between thickness and elevation as a

method to accurately quantify peat volume at the local, regional, and landscape scale? In this work we

address these questions and then compare the accuracy of the 3‐D model extracted from AEM data to the

model produced using the apparent correlation of peat thickness to surface topography.

2. Methods

2.1. Study Site and Data Acquisition

The site selected for this study covers an area of approximately 23,500 ha in West Kalimantan, Indonesia

(Figure 1). It is delimited to the north by the Kapuas River, which in this tract forms three large
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meanders, and to the south by agriculture land. The study site is now almost entirely covered by agriculture

land and villages, but before deforestation, the majority of the territory was covered by dense forests until

early 1990. The study site includes two different raised mires, the largest is located in the East part of the

site while the one located in the West part is smaller. The difference between the two mires may be due to

the fact that the deforestation started about 30 years ago in the West part of the study site, while the East

side remained forested until recently.

2.1.1. Field Measurements and Laboratory Analyses

Field‐based estimates of peat thickness were collected using soil coring equipment at a total of 63 locations

across the study area (Figure 1). Core locations were selected to represent a range of peat depths and geo-

morphic settings and were at least 10 m away from established foot paths in areas with minimal disturbance

of existing plant ground‐cover. Geographic positions were recorded with a handheld GPS (Ashtech Promark

100) with horizontal error of less than 1 m. Cores were obtained with a Russian‐style peat corer (Eijkelkamp

Agrisearch Equipment), which collects a semiundisturbed core, a half‐cylinder 5 cm in diameter, at 50‐cm

depth increments. During coring the physical properties of the peat profile and underlying mineral soils

(clay, loam, silt, and sand) were evaluated and recorded. Peat is defined as a material that has accumulated

in situ and consists of at least 30% (dry mass) of dead organic material (Joosten et al., 2017) and is taxonomi-

cally described as a soil found in the order Histosol, which primarily consists of partially decomposed

organic matter that has accumulated in a horizon at least 40‐cm thick with a minimum organic carbon con-

tent of between 12 and 18% depending on the clay content (FAO, 1988; FAO, 1998; Soil Survey Staff, 2014a).

Within each depth increment, peat material was inspected for degree of decomposition using the Von Post

Method (Von Post & Granlund, 1926) and for indicators of increasing mineral content (sand, silt, and clay)

using color, soil ribbon techniques, and soil plasticity tests (Soil Survey Staff, 2014b). The boundary between

peat and the underlying mineral sediments was established using USDA (United States Department of

Agriculture) criteria to classify soil into predominantly peat or mineral categories (Soil Survey Staff,

2014a). The deepest core increment typically contained the peat/mineral‐soil boundary with peat near the

top and mineral soil near the bottom of the sample‐chamber. Soil subsamples were collected from each

depth increment at 18 coring locations, weighed in the field, labeled, and packaged using aluminum foil, half

PVC storage, and polyethylene wrap. Samples were transported to laboratory facilities at Tanjungpura

Figure 1. Study site located in Kubu Raya District, West Kalimantan, Indonesia. Red dots indicate the field measurement

sites; AEM flight lines are plotted in black; the yellow line shows the location of the transect of Figure 2 (created using

ESRI ArcGIS – DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the

GIS User Community).
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University where analyses of soil moisture content, bulk density, and specific conductance (described below)

were performed according to standard methods. Moisture contents were measured by drying samples at

70 °C in the oven until a constant weight, and contents of organic matters were measured by combusting

2–3 g of dried samples at 550 °C (Anshari et al., 2010; Könönen et al., 2015). These values were used to deter-

mine the amount of soil organic matter and the organic carbon content by soil volume.

The spatial variability of peat thickness at this study site was determined based on 11 of the locations visited

in late November 2017. At each one of these locations, one point was selected for sampling the full core depth

while two additional cores were arranged in a triangular pattern with the vertices (cores) spaced between 0.5

and 6m apart (with one single triplet that contains one core ~11m from the other two). The two nearby cores

were acquired to sample the base of the peat so as to determine peat depth and an estimate of its local spatial

variability; this provided 22 additional measurements of peat thickness.

During the field campaigns, while the locations were determined using GPS, the measured surface eleva-

tions were not recorded due to the low vertical precision of the instrument and the limited time available

for the surveys. In order to assign the surface elevation to the core locations, we used the digital elevation

model produced through the interpolation of the SkyTEM altimeter data (see section 2.1.3 for details).

2.1.2. Electrical Resistivity Measurements

Laboratory and field measurements of electrical resistivity were performed with the purpose of guiding us in

separating peat from the underlying material in the AEM data analysis. Bulk electrical resistivity was

recorded during core extraction at several depths within the peat column using a 5TE capacitance moisture

probe from Decagon, which measures electrical resistivity using a stainless steel electrode array. At each pri-

mary coring location, electrical resistivity measurements were made approximately every 50 cm. When the

material present in the core was visibly heterogeneous over themeasurement interval of 50 cm, themeasure-

ments were increased to every 20 cm. If a clear boundary was visible between two materials in the measure-

ment interval, additional measurements were then taken immediately above and below the boundary.

Electrical resistivity measurements were also made in the laboratory on 25 of the core samples collected in

the field. Samples were prepared as mixtures of 10 g of solid and 10 ml of pure water. The samples were

homogenized for 1 h, and then measured with a WTW Conductivity Meter 3210.

2.1.3. The Airborne Electromagnetic Method

The instrument selected for this study, SkyTEM, is a helicopter‐deployed time domain EM system (Sørensen

& Auken, 2004). This specific instrument was selected because of its high sensitivity to near surface strata

due to its accurate early time returns (Schamper et al., 2014). The AEM method has been widely used for

groundwater exploration and the mapping of groundwater systems (Høyer et al., 2015; Knight et al., 2018;

Podgorski et al., 2013; Sattel & Kgotlhang, 2004). Its applicability for the detection of peatlands comes from

recent advancements in the technology that have increased the ability to obtain measurements with high

vertical resolution at shallow depths.

There are a number of parameters that can impact the applicability of AEM to peatland studies. Wemodeled

numerous scenarios and found that the key parameters are the thickness of the peat and the contrast

between the resistivity values of the peat and the substrate. The results of our feasibility analysis are included

in the Supporting Information. We found that when the resistivity contrast is large, there is high ability to

detect the change in resistivity at the bottom of the peat and accurately recover the peat thickness. The accu-

racy degrades as the peat thins or as the resistivity contrast decreases. As the resistivity contrast is decreased

or becomes variable, the mapped depth of the bottom of the peat becomes more uncertain, and the accuracy

of the estimate for the peat thickness is reduced. Whenever the peat and the substrate have the same resis-

tivity value, the AEMmethod cannot determine the thickness of the peat. When the peat thickness is ~1m or

thinner, the resistivity contrast must be extremely large in order to allow an accurate thickness detection.

The SkyTEM system used in this study is a time‐domain electromagnetic system carried as an external sling

load below the helicopter. Current flows through a transmitter loop, setting up a magnetic field. This field

generates eddy currents in the subsurface that generate a secondary magnetic field, the temporal variation

of which is recorded by the receiver coils as the field data. The SkyTEM system was used in November

2017 to collect data on the study site. The system collects data along flight lines, i.e., continuous lines formed

by returns that, near surface, have a footprint with a diameter of ~40 m. The distance between useful con-

tiguous returns along the flight lines depends on the sampling rate, the speed of the helicopter, and the
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signal to noise ratio. For this survey it averages about 30 m. The total length of the flight lines along which

data were acquired was 827 km, covering an area of 23,524 ha (235 km2). The distance between the 110 par-

allel flight lines was variable: most of the lines were separated by ~230 m; however, there are lines that were

separated by ~460m, and a few lines were separated by ~920m. The helicopter carrying the system flew at an

average speed of ~100–115 km/h, at an altitude of 25–65 m above the ground.

The acquired data were processed and inverted to obtain amodel of the subsurface electrical resistivity of the

region. Advanced processing was applied in order to prepare the data for the inversion. This includes data

corrections and filtering, culling, and discarding of distorted or noise‐affected data. The remaining data were

then averaged spatially using trapezoid filters, which improves the signal to noise level without compromis-

ing lateral resolution. Data processing was carried out using the SkyTEMmodule of the Aarhus Workbench

software package (Aarhus GeoSoftware, 2018).

Preliminary inversions were carried out using the quasi‐2‐D laterally constrained inversion (Auken &

Christiansen, 2004). Final inversions were carried out using the quasi‐3‐D spatially constrained inversion

(Viezzoli et al., 2008). Laterally constrained inversion and spatially constrained inversion are full nonlinear

damped least squares solutions in which the transfer function of the instrumentation is modeled. This

includes, among other things, current turn‐on and ‐off ramps, front gate and low pass filters, system altitude,

etc. The inversion kernel is “AarhusInv”, designed by the University of Aarhus (Kirkegaard & Auken, 2014).

The inversion performed using 25 layers was chosen as the one that best described the spatial distribution of

the peat.

In addition to the electromagnetic data, the SkyTEM system also provides independent data collected with

two laser altimeters placed on the frame that measure the distance to the ground surface along the flight line.

The tilt, roll, and yaw of the frame are measured with two inclinometers. After filtering out first returns and

retaining only last returns along the flight lines, these data were used to produce a surface digital elevation

model with an accuracy of ±1 m (Sørensen & Auken, 2004).

In order to determine the surface and the bottom topography of the peatland from the SkyTEM data, we per-

formed an interpolation of both the soil elevation detected by the altimeters and measurements of the bot-

tom of the peat layer extracted from the resistivity model produced from the SkyTEM data via inversion.

Several methods were tested, including spline interpolation, ordinary kriging, and Empirical Bayesian kri-

ging with different fitting functions (performed in ArcGIS Pro), all performed on a grid with 40 × 40 m pixels

(according to the footprint of the SkyTEM data). The method that gave the best results in terms of cross vali-

dation with the field measurements was the Empirical Bayesian kriging with a power semivariogrammodel.

2.1.4. Correlation Between Peat Thickness and Peatland Topography

In order to investigate the existence of a correlation between peat thickness and peatland topography we

used data extracted from studies performed in North and South America, Europe, Africa, and Asia to carry

out a comprehensive analysis examining commonalities and differences in both the surficial and bottom

topography of peatlands from varied climatic conditions and at very different latitudes. Capturing the

topo‐stratigraphic profiles contained in several of these studies, we measured the surface elevation, and

the peat thickness along the profiles at the points where coring was performed by the authors of the original

study. The transects generally ran across the mire starting from a stream or river, reaching the center of the

mire and eventually proceeding to the opposite side where there might be a second river (Esterle & Ferm,

1994; Page et al., 1999). The selected mires varied considerably in terms of morphology and included both

domed peatlands and mires with other surface morphologies (e.g. flat, concave, or irregular). For each study,

in order to address our first research question, we analyzed the relationship between peat thickness and sur-

face elevation. The complete list of the original studies examined and the correlation parameters are

reported in Table S1 (Supplementary Information).

Themain error we expect from these older studies is due to the difficulty in measuring the absolute elevation

above a certain level (e.g., mean sea level or themean level of the nearest river). This difficulty was present in

these older studies due to the unavailability/uncertainty of GPS systems or difficulties related to using topo-

graphic measurement techniques in remote areas. However, as we show in the Supporting Information, the

absolute elevation does not affect the slope of the regression line between peat thickness and surface eleva-

tion thus having no impact on the accuracy of our model.
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Another possible source of error is related to the methodology used when

collecting cores. The vast majority of the examined peatland studies mea-

sure the thickness of the peat using push probes or Russian peat corers

(DeLaune et al., 2013) hence directly determining the thickness of the peat

layer above the substratum. These measurements are point estimates of

the peat thickness, and their success can be affected by the presence of

pieces of wood or other materials that prevent the perforation and affect

the accuracy of the measurements, especially when push probes are used

(Parry et al., 2014). For this reason, some of the studies that we examined

that are based on push probe measurements may have larger errors than

those studies that used peat corers.

Ground‐based geophysical methods, such as ground penetrating radar

and electrical resistivity imaging, have been shown to be highly effective

in detecting peat thickness at high spatial resolution (Comas et al., 2015; Slater & Reeve, 2002; Warner

et al., 1990). Unfortunately, most of the geophysical studies we examined do not report the surface elevation,

and thus, we could not use them in this study to correlate peat thickness and surface topography.

At our study site, the empirical model was calculated separately for the West and East mires using the peat

thickness measured in the field and the corresponding surface elevations extracted from the digital elevation

model. The accuracy of the empirical model in predicting the peat thickness was calculated using a variant of

K‐fold cross validation, i.e., dividing the data set into test and training sets and averaging the mean squared

error (MSE) across all trials. For the West mire, we always used a test set of 5 points for validation and train-

ing sets of 5, 7, and 9 points for calibration. For the East mire, given the much larger data set available, we

used a test set of 14 points for validation and training sets of 4, 5, 7, 10, 15, 20, 25, 30, and 35 points for cali-

bration. Moreover, we also considered the whole dataset of 63 field measurements with a test set (for valida-

tion) of 14 points and training sets (for calibration) of 4, 5, 7, 10, 15, 20, 25, 30, and 35 points.

3. Results

3.1. Electrical Resistivity of Peat and Substrate

The distribution of electrical resistivity measurements performed in the field and in the laboratory is

reported in Figure 2. From the figure, we see that when the resistivity values fall below 25 Ohm‐m, there

is an increased probability that resistivity value corresponds to the presence of mostly substrate material –

here described as clay and loam. There were a few peat samples with very high values of electrical resistivity;

they are omitted in this figure so as to more clearly display themeasurements at in the lower part of the resis-

tivity range. As can be seen in this figure, the resistivity of the peat varies over the entire range of measured

values for all three materials. This implies that it would be challenging, in some cases, to differentiate peat

from the substrate material based on electrical resistivity values alone. In the resistivity interval 25–50 Ohm‐

m, the number of peat measurements is considerably lower than for values larger than 50 Ohm‐m. Based on

these observations, we selected as an initial estimate a conservative resistivity threshold between peat and

the underlying material of ~50 Ohm‐m. This was later refined through a more comprehensive interpretation

of the subsurface resistivity structure of the study site performed by examining the spatial distribution of

resistivity retrieved from the AEM data (see paragraph 3.2).

3.2. Peat Thickness from the Airborne Electromagnetic Method

The profile relative to the yellow transect included in Figure 1 is visible in Figure 3, where blue colors are

assigned to resistivities lower than 20 Ohm‐m, greens are assigned to the interval 20–35 ohm‐m, yellows

to the 35–55 Ohm‐m interval, and finally the orange‐reds indicate resistivities higher than 55 Ohm‐m.

Based on this and other transects that show the fast vertical variability shift for resistivity interpreted as cor-

responding to the transition between peat and the substrate, and also considering the resistivity distribution

measured in the field/lab (Figure 2), 45 Ohm‐m was chosen as threshold for the interface between the peat

and the underlying clay. We note that the 45 Ohm‐m value also well describes the results obtained from

coring (Figure 3).

Figure 2. Distribution of the electrical resistivity measurements made in the

field and in the laboratory on peat and the underlying material – described

here as loam and clay.

10.1029/2019JF005273Journal of Geophysical Research: Earth Surface

SILVESTRI ET AL. 6



Once the 45 Ohm‐m resistivity threshold was chosen, we could create a 3‐Dmodel of the peatland. Figure 4a

shows the map of the peat thickness distributed across the study site, where the 63 field measurements are

superimposed using the same color‐coded palette used for the map. We notice that, as originally speculated,

there are two juxtaposed mires within the site, one in the West and one in the East portion of the area. The

East dome is much larger than the West dome, with peat thicknesses higher than 6 m. Its shape is more reg-

ular and almost entirely covers the East half of the study site. The West mire covers only the center of the

West portion of the study site.

The overall accuracy of the AEM method in detecting the peat thickness along the flight lines is visible in

Figure 4b where we plot the thickness retrieved from the AEM data versus the thickness measured in the

field at the 14 locations where the distance between the AEM measurement locations and the nearest field

measurement is less than 20 m. Such a distance was selected because, as already mentioned, the SkyTEM

data have a measurement footprint with diameter of ~40 m. The regression shows that the AEM method

Figure 3. AEM resistivity model retrieved for the yellow transect of Figure 1 and compared with soil profiles from coring. Legend of the corings: Orange = Peat;

Gray = Mineral substrate (Clay). The continuous black line at the bottom represents the data misfit (to be read against the right axis). The dash line shows Misfit 1,

below which modeled data fit measured data.

Figure 4. (a) Peat thickness map of the study site obtained with the AEM method with field measurements superimposed (same color‐coded palette). The two

panels to the right show the scatter plots of predicted versus measured peat thickness values performed using the AEM method, with (b) the 14 field measure-

ments falling within a distance of 20 m from the SkyTEM returns, (c) all the 63 available field measurements. MSE = mean squared error.
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performs very well, with mean squared error of 0.6 m2. In general, we note that the method slightly overes-

timates the peat thickness where it is very shallow (less than 1 m) and underestimates it where it is thicker

than 5m. The bias can be corrected using a small number of field measurements; however, we decided not to

perform the correction in order to demonstrate the accuracy of the AEM method with no constrains.

The overall accuracy of thickness predicted with the AEM method decreases when we compare the peat

thickness measured at all of the 63 points (including those farther than 20m) with the thickness interpolated

from the AEM data (Figure 4c). In this case, the MSE equals 1.3 m2. This indicates that the thickness esti-

mated by interpolation of the AEM data at the field points is affected by larger errors. This is probably

due to the high spatial variability of the peat thickness that we have observed in the field; this is discussed

in the Supporting Information (see also Figure S5 of the Supporting Information).

3.3. The Empirical Topographic Approach

Our analysis of previous studies found that a linear correlation between peat thickness and surface elevation

is very common in many domed peatlands. Figure 5 shows several examples (only regression lines with p‐

value lower that 0.05 are shown). Looking at the regression lines in Figures 5a, 5b, 5e, and 5g, we find that

the slopem varies considerably from case to case, with values that can be close to 0 (e.g..m= 0.42, Page et al.,

1999) or greater than 3 (e.g. m = 3.2, Cameron & Schruben, 1983).

Figure 5. Correlations between peat thickness and soil surface elevation extracted from studies that report measurements recorded in locations situated in Asia,

Africa, Europe, South, and North America. Data are extracted from the following sources: (a) – Cameron and Schruben (1983) (dark red crosses: first bog to

the left of “their figure 2”, points 49‐5; blue triangles: third bog from the left of “their figure 2” points 68‐16 – Maine, USA); (b) – Cubizolle et al. (2007) (France);

(c) – Kowalczyk et al. (2017) (purple circles – Poland) and Silvestri et al. (2019) (orange squares – Norway); (d) – Esterle and Ferm (1994) (“their figure 5” – yellow

circles – Indonesia); (e) – Esterle and Ferm (1994) (“their figure 4” – blue diamonds – Indonesia), Supardi and Neuzil (1993) (“their figure 8” – red squares –

Indonesia), Page et al. (1999) (green crosses – Indonesia), Anshari, personal communication (purple triangles – Indonesia); (f) – Dargie et al. (2017) (Congo);

(g) – Lähteenoja and Page (2011) – (“their Figure 3a” – dark red squares – Peru and “their Figure 3b” – gray circles – Peru); (h) – Lähteenoja and Page (2011) (“their

Figure 3d” – Peru). The elevation is referred to a different zero for each data set, e.g., referred to the mean sea level or to another local reference as specified in

the supporting information.
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The linearity of the relationship between peat thickness and surface eleva-

tion is not trivial; it implies that, along the measuring transects, the bot-

tom profile of the peat mires covaries with the topography (see also

Figures S1a–S1c on the Supporting Information). The observed behavior

also implies that the highest elevation point of the top of the mire corre-

sponds to the lowest elevation point of the bottom of the mire when the

top surface is convex and the bottom surface concave and to the highest

elevation point of the bottom surface when both surfaces are convex. In

cases such as these, measurements of surface topography could be used

to estimate peat thickness if the value of m was known.

Despite the numerous examples of a linear correlation between thick-

ness and elevation in domed peatlands, our analysis also revealed peat-

lands (domed and not domed), independent of latitude or climate

characteristics, without such a correlation (Figures 5c, 5d, and 5h;

see also Table S1 of the Supporting Information). This absence of cor-

relation occurs over a variety of peatland types (Figures S1d–S1f of the

Supporting Information show three schematics). One common case is a

mire with a flat surface and concave bottom, as described by

Lähteenoja and Page (2011) for a site in Peru (Figure 5h). We can

see from the plot that the surface elevation is almost constant along

the transect, while the peat thickness varies from 0 to ~5 m. Flat surface mires with concave bottoms

and low correlation coefficients were also found by Silvestri et al. (2019) in Norway (Figure 5c – orange

squares). In these cases, given that the surface elevation is the same across the mire, it cannot be used

for predicting the peat thickness.

Another common category is domed mires with irregular bottom surfaces, as in the cases studied in

Indonesia by Esterle and Ferm (1994) (Figure 5d). Kowalczyk et al. (2017) describes the case of a mire with

almost flat surface and irregular bottom in Poland (Figure 5c – purple diamonds). In these cases, the peat

thickness varies independently from the surface elevation, as seen in the lack of correlation between the ele-

vations of the top and bottom surfaces reported in Figure S1d of the Supporting Information.

A different situation is described by Dargie et al. (2017) in a study of a very large mire in Congo. In this case,

Figure 5f shows a clear lack of correlation between peat thickness and surface elevation due to the irregular

shape of both the top and the bottom of the peatland.

Based on these findings, we develop a simplified framework for describing the topographic relationships

between the peat surface and bottom elevations that we can find in nature. We represent the mire as a flat-

tened spheroid (in agreement with the semielliptical surface profile described by Ingram, 1982). To simulate

the acquisition of measurements along a transect in the field, we consider a vertical plane through the peat

body producing a 2‐D interception. A more detailed geometric description of the model and a simple math-

ematical explanation is included in the Supporting Information.

Shown in Figure 6 are schematics of the cases considered, varying the shapes of the bottom surface of a mire

and keeping the top unchanged. Our first case, convex‐concave, always results in the slope m (i.e., ratio

between peat thickness and soil elevation) being greater than 1. If we have a perfectly specular shape of

the peat body with respect to the horizontal plane, the slope is equal to 2. When the elevation of the bottom

of the peat decreases faster than the increase of the top surface, the slope is greater than 2. When we have the

opposite case, the slope is less than 2.

When the mire bottom is flat, the slope of the regression line between soil elevation and peat thickness

equals 1 as shown in Figure 6. In this case, referred to as convex‐flat mires, the change in elevation is equiva-

lent to the change in peat thickness. When we have a convex‐convex profile, i.e., both the top and the bottom

of the mire are convex, the slope of the regression line is less than 1. The chosen framework for the empirical

approach shows that, when there is a linear correlation between peat topography and bottom shape, m can

be used to categorize different morphological types of peatlands, because the difference in the slope is dic-

tated by the difference of the curvature in the surface profile with respect to the curvature of the peat bottom

profile. The mathematical explanation included in the Supporting Information shows that the chosen

Figure 6. Simplified peatland morphologies corresponding to different

values of the slope m.
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framework for the empirical approach is not unique; other peat profiles, regardless of the shape of the domed

mire, may be characterized by the covariation of the peatland bottom and surface and consequently by the

existence of the linear correlation between peat thickness and surface elevation. This covariation is not a spe-

cial case; on the contrary, it is likely to be common for domedmires across the world as illustrated in Figure 5

for peatlands situated on different continents and at different latitudes. The convex‐concave peatlands have

likely developed over depressed terrain that allowed the accumulation of peat starting in the center of the

depression, as confirmed by dating analyses of samples collected in several studies (Richardson, 2008;

Rydin & Jeglum, 2013). Once the depression is concentrically filled with organic soil, the hydrological con-

ditions favor the development of a domed bog, which is a common situation in both high‐latitude (Gorham,

1957; Rydin & Jeglum, 2013) and tropical (Craft & Richardson, 1998; Householder et al., 2012) environ-

ments. However, peat also accumulates over flat lands, as confirmed by the convex‐flat profile.

Importantly, our findings are consistent with peatland studies where the lowest subsurface areas on the

landscape result in the production of the thickest peat domes while shallower peats are found on subsurface

mineral ridges (Glaser et al., 1997; Rydin & Jeglum, 2013).

We have now explained why and in what specific cases a correlation between peat thickness and sur-

face elevation exists (Research Question 1). We must now determine (2) to what extent this correlation

is transferable across locations. In order to answer our second question, we use as an example the study

performed by Cameron and Schruben (1983) for a peatland area in Maine; this study is commented on

in Supporting Information (see Figure S4). As seen in other studies, Cameron and Schruben (1983)

reported observations on a series of closely‐spaced individual mires. Since each mire has a specific

and unique correlation between the surface and the bottom shape, we show that when observations per-

formed on one mire are used to infer the thicknesses of other nearby mires, significant errors are

incurred. In this situation, the determination of the boundary of each mire is essential in order to estab-

lish any possible correlation between peat thickness and elevation. However, such determination may

not be easy to establish a priori, leading to overestimation or underestimation of the actual peat volume.

It is also important to note that without sufficient a priori knowledge of the study site, it would be

impossible to determine the correct number and distribution of ground‐based sampling locations needed

to determine the correlation (i.e., the correct m) that would make it possible to calculate peat thickness

from a measurement of surface elevation. This is particularly true for large study sites containing several

mires. The transferability of a specific correlation between peat thickness and surface elevation found

for a certain mire may also be affected by the effects of peat degradation. It should, in fact, be recog-

nized that our analysis refers to peatlands in undisturbed conditions. Disturbance due to draining, burn-

ing, and flattening of the peatland surface may result in changes to the relation between thickness and

elevation, resulting in a modified correlation slope, m (or even the absence of any correlation). Thus,

even if we recognize that the slope may provide information on disturbance level and history, it may

also lead to an erroneous estimation of the peat volume for one mire and hence for the nearby mires

if this correlation is transferred. Collectively, our analyses show that the correlation between peat thick-

ness and surface elevation is site‐dependent and may provide erroneous peat volume estimates once it is

extended to other sites or to large territories.

At our study site, the linear correlation between peat thickness and soil topography is visible in

Figures 7a and 7b, where we divide the 63 coring sites into two groups, with 14 in the West dome

(Figure 7a) and 49 in the East dome (Figure 7b). In order to broadly characterize the morphology of

the two peatlands, we start with analyzing the measurements collected in the field. If we examine

the correlation between peat thickness and surface elevation for the two peatlands separately

(Figures 7a and 7b), we find two different slopes. While for the West peatland the linear correlation

is very poor (R2 = 0.17), peat thickness is strongly correlated with surface elevation for the East mire

(R2 = 0.82). In this case, the slope m = 0.94 indicating that the peat bottom tends to be flat.

However, if the area is treated as one peatland and all the available measurements are plotted together,

m of 0.74 is obtained (R2 = 0.73) (not shown in the figure for brevity), leading to the erroneous conclu-

sion that the bottom of the peatland is convex for the entire area. Using this correlation, with m = 0.74,

over the entire site would result in an underestimation of peat thickness in areas of the East dome with

thick peat and produce unreliable thickness estimates for the West dome where, in fact, the correlation

between thickness and surface elevation is weak.
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In order to explore the accuracy of the empirical approach, we consider three scenarios. The first (ideal) case

is one in which a detailed description of the morphology of the study site is available and we know a priori

that there are two contiguous but distinct mires and their exact boundaries. In this scenario, we perform a

cross validation of the empirical method results obtained when two regression lines were calculated sepa-

rately for the West and the East mire. Specifically, in order to assess the error, we randomly pick a number

of the field points (5 for the West mire and 14 for the East mire) using them as the testing sample set and use

the remaining measurements as the training sample set to fit the empirical linear correlation. This process is

repeated several times with different combinations and allows us to calculate the error in predicting peat

thickness from the empirical method. Figure 7c shows that in general, the MSE of the empirical method

decreases when the number of measurements that are used during the training phase increases but quickly

reaches a point where, even if the number of measurements increases, the MSE stays stable. This is the case

of the East dome, for which the MSE stays stable at around 0.9 m2 as the number of measurements equals or

exceeds 10. The same behavior is noticed when the entire dataset is used: in this case the MSE, is constantly

higher and stays stable at around 1.2 m2 as the number of measurements equals or exceeds 20. The error is

consistently higher for the West dome than for the East dome also because the number of field measure-

ments used for training is lower than 10 (MSE larger than 1.3 m2).

In a second scenario, no a priori detailed information is available about the study site, and we use all the field

measurements together, fitting one single empirical line to predict the peat thickness across both mires. In

this case (Figure 7c), the MSE is consistently higher than the one calculated for the East dome and similar to

the one calculated for the West dome. The MSE is higher than 1.3 m2 if the number of field measurements is

equal to or smaller than 15, and it is around 1.2 m2 if the available measurements exceed 20 points. We spec-

ulate that this is the most likely scenario; as when a survey is planned in a new area, there is often limited a

priori information available.

The third scenario describes the case of using the measurements performed in one of the two peatlands to

determine the empirical linear correlation and use it to predict the peat thickness of the second peatland.

In this scenario, if we use the empirical model calculated for the West dome to predict the thickness of

the East dome, the MSE is 2.4 m2. If we use the empirical model calculated for the East dome to predict

the thickness of the West dome, the MSE increases to 3.6 m2. These results confirm that the empirical

method cannot be reliably transferred across peatlands.

3.4. Comparison of the Airborne Electromagnetic Method with the Empirical

Topographic Approach

In order to compare the results obtained with the AEM method with those obtained with the empirical

approach, in Figure 8, we consider several selected AEM transects that intercept the locations of the field

measurements (i.e., only AEM transects that fall less than 20 m from the field measurement points

were selected).

Figure 7. Linear regressionmodels for the (a) West and the (b) East domes of the study site. (c) Mean squared error (MSE) of the empirical model calculated using a

variant of the K‐fold cross validation randomly dividing the data into a test and a training set. The MSE is the average squared error across all trials. For the West

mire (red dots): test set (for validation) = 5 points; training set (for calibration) = 5, 7, and 9 points; number of trials: 30. For the East mire (black dots): test set (for

validation) = 14 points; training set (for calibration) = 4, 5, 7, 10, 15, 20, 25, 30, and 35 points; number of trials: 100. Considering the whole dataset of 63 field

measurements (yellow dots): test set (for validation) = 14 points; training set (for calibration) = 4, 5, 7, 10, 15, 20, 25, 30, and 35 points; number of trials: 250.
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Also shown in Figure 8 are the bottom profiles of the peat predicted along the transects from surface eleva-

tion using the empirical model calculated for the West and the East domes separately. The profiles mapped

with the AEM method show significant variability in the shape of the bottom surface of the peat, which is

possibly due to the high spatial variability of the peat bottom at the local scale as observed by the triplets

of measurements performed in the field (see Figure S5). In general, we note that the field core measurements

agree with the AEM profiles. The agreement is particularly evident where the peat thickness is intermediate,

i.e., between 2 m and 5 m (transects B, E, and J), and in these cases, the mapping of the bottom elevation

using the AEM method is more accurate than using the empirical approach. Along transect D, the peat is

very shallow (less than 1 m), and both the AEM method and the empirical approach tend to overestimate

the thickness, while along transect H the thicknesses are larger than 5 m, and both tend to underestimate

them but to varying degrees.

The consistent difference found between the peat thickness prediction abilities of the two methods propa-

gates into the calculation of the total peat volume. Specifically, using the empirical approach separately

Figure 8. Map of the SkyTEM flight lines over the study site. Red and black dots correspond to the coring locations in the West and East peatlands respectively

(Coordinate reference system: WGS84 UTM 49S). Transects report the comparisons between the bottom elevation simulated using the empirical approach

(orange dots) and the bottom elevation retrieved from the AEM data (green dots) along the transects visible in the map. Brown dots define the surface topography

measured using the laser altimeters carried by the SkyTEM system, while red and black dots correspond to the field measurements located less than 20 m from the

nearest AEM measurement.
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for the two mires (i.e., the most favorable scenario), we calculate a peat volume of almost 410 million cubic

meters (409,235,293m3), while the volume calculated using AEM data is 22% higher, about 500million cubic

meters (499,879,707 m3). Given the average organic carbon content by soil volume of 0.054 g/cm3 retrieved

from the laboratory analysis, we calculate that this peatland stores 22.1 Mt of organic carbon if we consider

the volume given by the empirical method. Considering the volume retrieved with the AEM method, we

have a much larger content of organic carbon, equal to 27 Mt. This is due to the intrinsic lack of capability

that the empirical approach has to follow the changes of thickness (e.g., of peat bottom elevation) at the local

scale, changes that are confirmed by our closely‐spaced coring measurements (Figure S5). This appears to

produce a general underestimation of the peatland volume using the linear model, with important conse-

quences for the quantification of the carbon stored in the system. The high density of AEM data, on the con-

trary, allows for the description of the bottom morphology at a high spatial resolution, detecting changes

over small distances.

4. Discussion

Themorphology of peatlands, especially those with a domed surface, has long fascinated ecologists, geomor-

phologists, and geologists. Historically, there have been studies seeking to understand how the surface mor-

phology of domed mires (i.e., peatland dominated by living peat‐forming plants that have a raised surface

with respect to the surrounding lands) develop and the dependence of peat formation on hydrological vari-

ables, i.e., rainfall and drainage patterns (Ingram, 1982; Clymo, 1984; Foster &Wright, 1990; Belyea & Baird,

2006; Cobb et al., 2017). The topographic shape and patterns within peatlands reflect the interactions

between underlying terrain form, climate, and hydrology, i.e., hydromorphology (Cobb et al., 2017; Rydin

& Jeglum, 2013). However, past efforts were devoted to the characterization of the surface profile of peat-

lands, i.e., its topography, ignoring the importance of studying the profile of the peat bottom, which is set

as a horizontal surface boundary condition in both Ingram's and Clymo's peat growth models.

The geophysical approach based on the AEMmethod allowed us, for the first time, to map out at high spatial

resolution the variation in the elevation of the peatland surface and the peatland base, revealing the peatland

top and bottom morphology and allowing for the accurate quantification of peat volume. The level of con-

trast between the resistivity of the peat and that of the underlying clay substrate, typical of Indonesian peat-

lands and many others worldwide, provided the conditions required for the application of the AEMmethod.

The great advantage of the AEMmethod, relative to other ground‐based geophysical methods, is the speed of

data acquisition, allowing for fast detection of the interface over large distances. The absence of interference

due to the presence of infrastructure and power lines, which is a typical limitation for AEM applications in

regions with high population density, further facilitated the application of the methodology. We conclude

that in similar conditions the AEM approach can provide the critical information needed to quantify peat

volume and carbon storage from the local to the landscape scale.

The AEMmethod applied in this study has the great advantage of imaging the shape of the peat top and bot-

tom virtually instantaneously, as the helicopter takes just a few days to cover large territories. This allows the

assessment of the peat volume and carbon content even on lands that undergo degradation effects, which

usually result in the loss of peat mass and consequent subsidence of the soil surface. Ideally, the repetition

of AEM surveys over degrading peatlands would make it possible to follow the loss of mass and to eventually

assess the amount of carbon dioxide emitted due to this process. A similar approach has been shown very

effective by Ballhorn et al. (2009) using LiDAR data collected before and after fires. However, since the

AEM images both the top and the bottom of the peat, the method can be used to follow the evolution of

the entire 3‐D peat body.

The main limitations that we have noticed in the application of the AEM to the study site are (1) the diffi-

culty in detecting a sharp transition between the peat and the substrate, and (2) the decreased accuracy

obtained in retrieving the peat thickness between flight lines. In situations where there is a limited resistivity

contrast between the peat and substrate, or a gradual transition between the two, it is more challenging to

detect the base of the peat; these two factors likely varied throughout the study site. As for the increased error

in peat thickness assessment between flight lines, we believe it is due to the large spatial variability of the

peat thickness. The spatial sampling of the subsurface with the AEM method needs to be sufficient to cap-

ture the spatial variability; the shorter the distance over which peat thickness varies, the closer the flight
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lines need to be to accurately capture the variation in thickness. There will always be a trade‐off between the

increased accuracy achieved with closer line spacing and the increased cost of acquiring more data. More

work is needed in order to understand how the use of ancillary data and/or the production of a well‐

characterized covariance model may be used to optimize data acquisition. Another potential limitation, in

other locations, is when peat soils are sitting on top of more resistive material (i.e., a sandy mineral‐soil

matrix), which is a common situation in coastal sites in Indonesia (i.e., related to colonization of swamps

over sandy ridges). The use of AEM for peat volumemapping over resistive substrate has been recently found

to be effective in boreal peatlands (Silvestri et al., 2019); however, further studies are needed in order to

extend the application of this method to tropical peatlands.

Our results show that a linear correlation between peat thickness and peatland topography is common in

some dome‐shaped peatlands across the world. Exploring a number of topo‐stratigraphic profiles extracted

from several studies, we were able to categorize, from a morphological prospective, the combinations of sur-

face and bottom shapes that make such linearity possible. The linearity of the relationship between peat

thickness and surface elevation implies that, along measuring transects, the bottom profile of the peat mires

covaries with the topography, i.e., when the surface elevation increases, the bottom elevation either

increases or decreases accordingly. Even though these findings provide new insights on the morphological

characteristics of peatlands, we show that the empirical model based on the linear correlation between peat

thickness and peatland surface elevation has limited prediction capabilities. In fact, as with many other

empirical models, its accuracy strongly depends on the number and spatial coverage of available field obser-

vations to calibrate themodel. Moreover, since the linear correlation is site‐specific, the empirical model pro-

vides erroneous peat volume estimates once it is extended to other sites or to large territories.

Our application to a real case study shows that the empirical approach linearly linking peat thickness to sur-

face elevationmay provide a simple conceptual model of the peatlandmorphology as long as detailed a priori

information is available. Unless the morphology of the two peatlands present in the study site is well known

a priori, the error associated with the empirical approach in predicting the peat thickness is high. As an

example, we note that the weak correlation between peat thickness and topography characterizing the

West peatland may be due to the advanced state of peat degradation resulting from reclamation efforts,

which probably produced land subsidence. Different zones of the peatland were reclaimed in different per-

iods, starting in the 1980s, resulting in uneven subsidence of the area, which in turn affected the original cor-

relation between peat thickness and topography. The East peatland has been reclaimed only recently, and

thus, the degradation process has only recently started to impact its surface topography. We thus conclude

that the use of the empirical approach for peat thickness quantification is risky and should be used only

to obtain an approximate description of the peatland morphology. Furthermore, we note that the

Indonesian site selected for this study does not reveal how uncertain the prediction produced with the

empirical model may become. At this site, the two peatlands are similar, both showing peat thicknesses

between 0 and 7 m, and the bottom is almost flat, especially for the East dome. In general, whenever the peat

thickness range differs between two peatlands, the error in predicting the thickness using mixed data or data

extrapolated only from one of the two peatlands increases considerably. On the contrary, the high spatial

resolution of the thickness retrievals from AEM data guarantees high accuracies, especially along the flight

lines, regardless of the morphology of the peatland.

5. Conclusions

Our results show that the AEM method can detect both the top and the bottom of a peatland profile over

large areas at high spatial resolution, allowing for a comprehensive three‐dimensional morphological

description of the peat body that yields accurate estimates of peat thickness at large (i.e., km) scales of mea-

surement. This method can be used to quantify the total peat volume, regardless of the surface topography of

the peatland. In this study, we deliberately avoided the use of field measurements to constrain the data inver-

sion, in order to allow the assessment of this technique per se. However, limited coring data may initially be

needed to assist with identifying the transition between the peat and the underlying substrate, as the chan-

ging electrical properties in the transition zone may produce uncertainties in the detection of a precise

boundary. Properly employed, the AEM methodology is robust and accurate. In our study, we show that

it performs extremely well along the flight lines, where the instrument clearly detects the peat layer and
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differentiates it from the underlying mineral substrate. Moving away from the flight lines, the highly vari-

able structure of the peat is more difficult to capture in the interpolation of the AEM data but is still more

accurate than using the empirical approach. In varying dome conditions, a higher flight line density is pre-

ferable to describe the spatial distribution of the peat layer. The main issue with this technology is the per-

ception of its high cost; but the saving in terms of time to map peat thickness throughout large areas is

enormous when compared to other methods. Another potential limitation in the applicability of the AEM

method (although not an issue at our study site) is the presence of infrastructure that interferes with the sig-

nal. Finally, in the case of highly variable carbon content within the peat body, the AEM method may not

provide adequate resolution (vertical and horizontal) to accurately detect the corresponding variability in

the electrical resistivity, meaning some field testing and analysis a priori are recommended.

In this study, we have also explored the feasibility of predicting the peat thickness based on its apparent cor-

relation to the soil topography. Our analysis of several previous studies available from the literature has

shown that a linear correlation is present only in some dome‐shaped peatlands. We could not find any spe-

cific characteristic of the peatland (e.g., latitude, climate, vegetation cover type, etc.) that makes it possible to

determine if such a correlation is present a priori. In those cases, where a correlation does exist, the geo-

graphic area over which it is valid can be very limited; the correlation can vary between individual mires.

When used for predicting the peat thickness, the empirical topographic model can broadly describe the mor-

phological characteristics of a peatland and can be used to calculate its peat volume only when the linear

correlation between peat thickness and surface elevation is strong. In such cases, the prediction accuracy

strongly depends on the number and specific locations of available field observations, and in case of

degraded/reclaimed systems, on the grade and homogeneity of the degradation across the peatland. Since

the linear correlation is site‐specific, it provides incorrect peat volume estimates when it is extended to other

sites or over large territories. When compared to the AEMmethod, our results show that the AEMmethod is

superior in detecting the peat morphology and volume.
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